Systep Ingeniería y Diseños

Energy Auctions Chilean Experience: process and lessons

Sebastian Mocarquer Hugh Rudnick

Overview

- Chilean system description
- Contract scheme before auction mechanism
- > The need for energy auctions
- Regulatory reforms
- Design and implementation of energy auctions mechanism
- > Results and conclusions

System description

Market description

- High (though uncertain) growing rates of demand
- Mainly hydraulic generation
- High dependence on foreign primary energy sources
- Generation market is competitive, but dominated by four companies

Installed capacity by company in SIC

Demand evolution

1

- Energy growth 4% to 6% per year
- As in developing countries, high correlation between energy growth and GDP growth

Source: CNE, Systep

Hydrology

- ➤SIC system generation highly depends of hydrology
- Prolonged droughts can drive to supply crisis

Gas restrictions

Uncertainty of natural gas supply from Argentina

Fuel Prices

Rising cost of alternative energy sources

Source: Henry Hub prices, BP Statistical Review of World Energy

Generation portfolio

1

- ➤ Diesel replaced Natural Gas
- ➤ Inclusion of expensive units whose implementation is fast

Source: CDEC-SIC, Systep

Generation Investment

Investment rate and demand growth were unbalanced

Source: CDEC-SIC, Systep

Contract scheme before auctions

- Supply for regulated costumers was contracted at fixed regulated price (Node price)
- Node price: Regulator's projection of future marginal cost, updated every 6 months
- Unstable long-term price signal

Energy prices

Drivers for reforms

Regulatory Reform Utilities unable to

Uncertain future scenarios

renew contracts

Stalled generation investments

Law Nº 20.018

"Auctions"

Auction mechanism

- ➤ Law Nº 20.018 allows Distribution Utilities to contract their energy requirements by means of competitive auctions (price defined by auctions)
 - ☐ Replaces volatile spot prices as market signal for expansion
 - Long-term signal prices based on real cost expectation from generation companies
 - New generation capacity is backed with long-term supply contracts, reducing risk.

Auction mechanism

- Open and competitive bidding process
 - ☐ First price sealed bid auction
 - 100% of demand must be contracted all the time
 - ☐ Contracts for 15 year period
 - Contracts for base and variable energy supply
 - ☐ Demand is divided in blocks to allow partial supply offers
 - ☐ Utilities may group to allocate larger demand blocks
 - Indexation formulas are established by generators

Auction mechanism

Auction 1, October 2006

Total energy: 14,170 GWh

Allocated energy: 12,766 GWh

Price cap: 61.7 US\$/MWh

Mean allocation price: 52.8 US\$/MWh

Energy Not-allocated: 1,404 GWh

Auction 2, October 2007

Total energy: 14,732 GWh

Allocated Energy: 5,700 GWh

Price cap: 62.7 US\$/MWh

Mean allocation price: 61.2 US\$/MWh

Total Energy Not-allocated: 9,032 GWh

Auction 2.2, Second bidding, March 2008 Second Auction, second bidding March 2008

Total energy: 1,800 GWh

Allocated energy: 1,800 GWh

Price cap: 71.06 US\$/MWh

Mean allocation price: 65.5 US\$/MWh

Total Energy Not-allocated: 7,232 GWh

by Generators

Auction 3: delayed until december 2008!

Estimated price cap: 125,2 US\$/MWh

Supply begins: 2010

Ex-post evaluation

- 1
- Was auction mechanism successful in Chile?
- ☐ Did energy price reach equilibrium?
 - Was all energy allocated?
 - ☐ Did generation investment grow?
 - Did new competitors enter the market?

Bidding prices

Auction date	GenCo	Bid price (US\$/MWh)	Indexed bid price sept 08 (US\$/MWh)	Supply begins	Averge price sept 08 (US\$/MWh)
	Endesa	50.8	71.6	2010	94.2
Auction 1 2006	AES Gener	56.4	130.1		
	Colbun	53.9	111.6	2010	94.2
	Guacolda	55.1	99.8		
Auction 2	Endesa	61.0	69.3		
2007	Colbun	58.2	60.3	2011	65.9
Auction 2.2	AES Gener	65.8	67.5		

Large price gap between 2010 and 2011 energy blocks

Average Indexed price Sept 2008 (US\$/MWh)

Supply 2010	Supply 2011	Δ
94.2	65.9	30%

- 20112
- What causes price difference between 2010 and 2011?
 - ☐ Indexation Formulas

Indexation				Supply	
GenCo	CPI	Coal	LNG	Diesel	begins
AES Gener	31%	69%	0%	0%	
Colbún	30%	45%	0%	25%	2010
Endesa	70%	15%	15%	0%	2010
Guacolda	60%	40%	0%	0%	
AES Gener	100%	0%	0%	0%	
Colbún	100%	0%	0%	0%	2011
Endesa	70%	0%	30%	0%	

Average Indexation parameters				
Supply begins	СРІ	Coal	LNG	Diesel
2010	52%	34%	8%	6%
2011	87%	0%	13%	0%

Coal indexation leads to higher future prices

- 20112
- What causes price difference between 2010 and 2011?
 - ☐ Additional risk for supply contracts starting on 2010

Projected Marginal Cost (US\$/MWh)

Auction prices according to market expectations, specially after 2011

Levelized cost of a coal generation unit

Costs for Coal Unit 350 MW				
Capacity	MW	350		
Own consumption	%	6%		
Real capacity	MW	329		
Investment cost	US\$/kW	2,000		
Connection investment	miles US\$	7,000		
Port Investment	miles US\$	20,000		
Total investment	miles US\$	727,000		
Plant factor	%	85%		
Coal cost	US\$/ton	100		
NCVC	US\$/MWh	4		
Levelized cost	US\$/MWh	79.7		

Source: Systep

Allocated energy

(2006)

Auctions allocated 70% of energy up to date

Total Energy (GWh) 1,403 7,232 Not allocated 12,766 Allocated 7,500 **Auction 1** Auction 2 &

2.2 (2007)

New investments

- SIC capacity will expand 6,757 MW (71%) next ten years
- > Only one unit (342 MW) is directly backed by auctions

Year	MW			
Teal	Coal	Gas	Diesel	Hydro
2008	-	-	373	-
2009	139	240	232	155
2010	924	-	-	172
2011	482	-	-	327
2012	445	-	-	553
2013	-	-	-	705
2014	250	-	-	660
2015	-	-	-	-
2016	300	-	-	500
2017	300	-	-	-
TOTAL	2.840	240	605	3.072

Source: CNE, Node price report Apr 2008

New competitors

- No new competitors entered the market during this process
- However, price stability resulting from auction process may be attractive for new investors in future biddings
- Timing shall be revised to avoid entry barriers

Auction implementation

- Auction 1 (2006)
 - ☐ Bidding process lasted only a few months
 - ☐ Time barrier for new investors to prepare proposals
- > Auction 2 (2007)
 - ☐ Supply contract scheduling was tight and rigid
 - ☐ Lead time for new coal units exceeds lead time to begin supply
 - ☐ Time barrier for new investments

Conclusions

- Auction mechanism in a regulated market provides a stable signal for long-term prices, enabling generation investments
 - ☐ Chile faced the supply crisis using competitive market tools
 - ☐ Resulting investments overcomes the disequilibrium of supply and demand
- Pending challenges
 - ☐ Large energy blocks remains unallocated (7 TWh)
 - ☐ Price cap has increased significantly
 - ☐ Indexation formulas did not increase prices uniformly

Speed over Precision

- Energy blocks starting by 2010 were not allocated
 - ☐ Generators foresee an additional and unbounded risk for 2010
 - ☐ Chile will be in a transition period to equilibrium beyond 2010
 - ☐ No new generation units available to supply those blocks
 - ☐ It is a <u>risk issue</u> rather than a price issue
- Free criteria to define indexation formulas makesdifficult the comparison of different offers
 - ☐ Low bids might result in higher future prices, depending on indexation
 - ☐ How do we evaluate the real cost of bids?

What's next?

- Current auction's cap price reached 125 US\$/MWh
- ☐ A long-term cost higher than system development cost can seriously endanger competitiveness and impair consumers
- Solution alternatives
- Modifications in auction design, specifically on timing to allow new participants and generations units to supply demand
- Extent current mechanism for supply without contract to overcome the critical transition period
- Administrative solution from Regulatory Authority is required

Systep Ingeniería y Diseños

Energy Auctions Chilean Experience: process and lessons

Sebastian Mocarquer Hugh Rudnick