

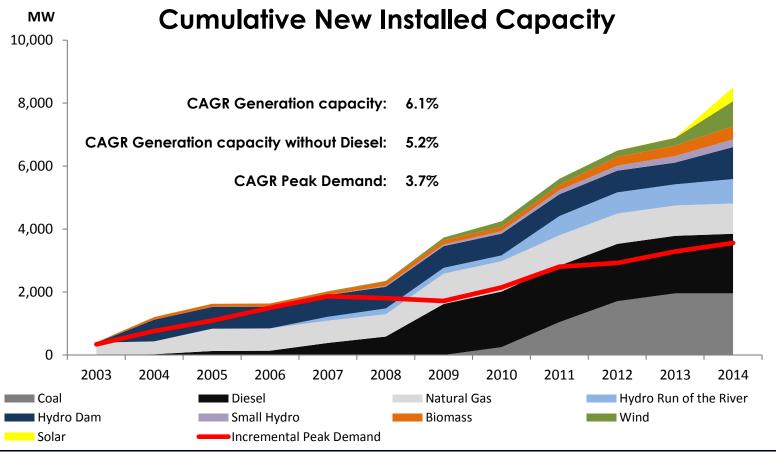
The impact of renewable portfolio standard in fast growing countries The Chilean experience

Sebastian Mocarquer, Hugh Rudnick, Pedro Miquel, Jaime Larraín & Javier Ayala

2014 IEEE Power & Energy Society General Meeting Charting the Course to a New Energy Future

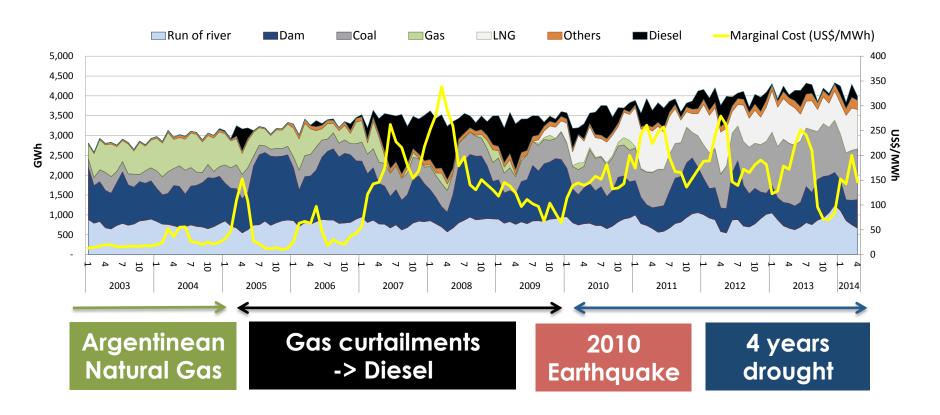
- Chilean electricity market context
 - Electricity system description and characteristics
 - Economical and social challenges
 - Renewable portfolio policy discussion
- Impact of the increase of renewable portfolio standard policy from 10% to 20%
 - Investment, operation and transmission costs
 - Final consumer prices
- Final remarks

Chilean Electricity Systems (June 2014)


SING	<u></u>	Gross Capacity (Dec-2013)	Electricity Generation (2013)	Maximum demand (2013)	Population
Sistema Interconectado Del Norte	Arica y Parinacota Tarapacá Antofagasta	3,966 MW 20.8%	17,229 GWh 25.2%	2,243 MW	5.7%
SIC Sistema Interconectado Central	Atacama Coquimbo Valparaiso Región Metropolitana Lib. Gral. Bdo. O'higgins Bío-Bío Araucanía Los Ríos Los Lagos	14,968 MW 78.4%	50,820 GWh 74.2%	7,283 MW	92.6%
SEA Sistema de Aysén	Aysén	50 MW 0.3%	155 GWh 0.2%	25.3 MW	0.6%
SAM Sistema de Magallanes	Magallanes	112 MW 0.6%	291 GWh 0.4%	51.7 MW	1.1%

Source: CNE, CDEC, Systep

SIC investments last 10 years



	Cumulative New Installed Capacity 2003-2014 (MW)											
Coal	Diesel	Natural Gas	Hydro Run of the River	Hydro Dam	Small Hydro	Biomass	Wind	Solar	Total			
1,958	1,892	964	774	1,017	245	422	790	441	8,503			

Source: CNE, CDEC, July 2014

- High energy prices for the past seven years.
- Perfect storm or market failure?

Source: CDEC-SIC, July 2014

Social rejection and litigious scenario

Several or most energy projects from different technologies have been trapped in approval processes, and most end up in the judicial system.

Coal:

- Castilla (2,100 MW)
- Pacífico (350 MW)
- Barrancones (540 MW)
- Punta Alcalde (740 MW)
- Bocamina 2 (357 MW)

Hydro:

- HidroAysén (2,750 MW)
- Cuervo (640 MW)
- Neltume (490 MW)

Wind:

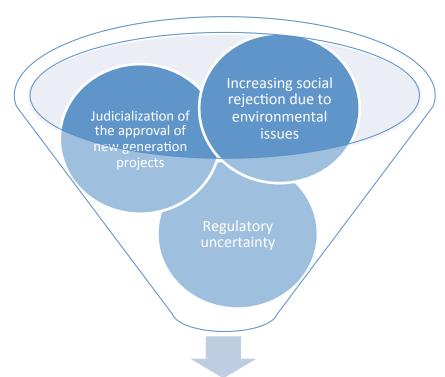
- Chiloé (100 MW)
- Arauco (100 MW)

8,496 MW in projects have been rejected or challenged in court

<u>Hidro Aysén</u>

Hydroelectric - 2,750 MW Investment 3,200 MMUS\$ May 2012

Chiloé


Wind - 112 MW Investment 235 MMUS\$ July 2011

Source: Systep, press, July 2014

Risks for the investment

Uncertainty in future generation expansion

Social Rejection:

Not in my backyard effect

Judicialization:

Environmental permit processes normally end in court

Regulatory uncertainty:

Changes in the market rules New energy policy to be discussed in 2015

Renewable energy regulation and incentives

Law 19.940 - Short Law I (2004):

- Decree 244 Non-conventional and Small Generator Bylaw (2006):
 - Incentives for small generators (less 9 MW, including NCRE).
 - Trunk Transmission toll total or partial exemption.
 - Energy trade through stabilized price option or fixed price

Law 20.257 - NCRE Law (2008):

- NCRE Quota of 10% by 2024 for contracts signed after August 2007, starting with 5% in 2010 and increasing 0,5 % annually from 2014 until 2024.
- Penalty for non-compliance (30 US\$/MWh first time, 45US\$/MWh second time).

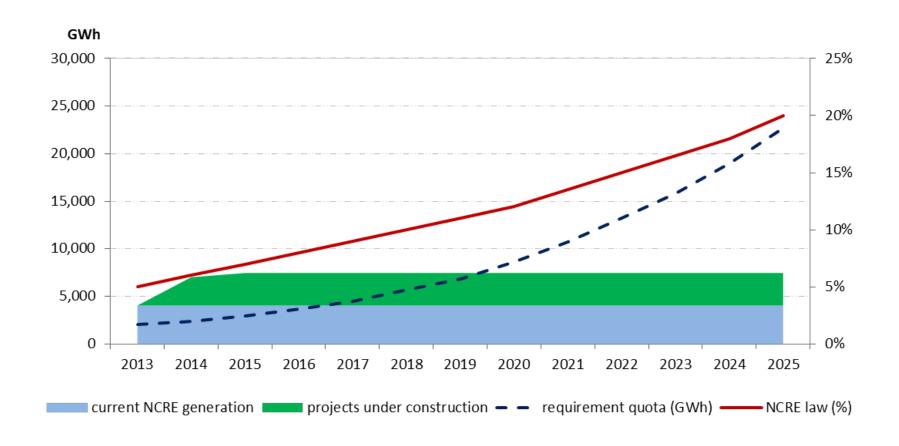
Law 20.698 - 20/25 Law (2013):

- Modification of the NCRE Quota (20% for 2025) for contracts signed after July 2013.
- Annual NCRE auctions for the compliance of the quota, when the National Energy Commission foresee NCRE deficit.

Renewable projects in Chile

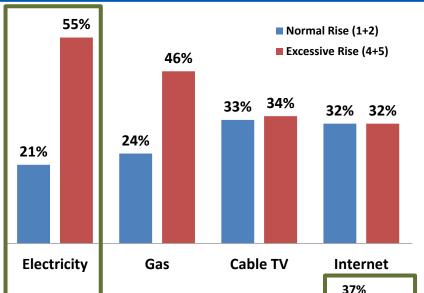
Technology	Installed Capacity [MW]	Under construction [MW]	Environmental Qualification Approved [MW] (1)	Under Assessment [MW] (2)
Small Hydro	341	34	290	183
Wind	682	154	4,542	2,099
Biomass/Biogas	461	22	74	66
Solar-PV	184	448	5,809	4,155
Solar-CSP	-	100	760	-
Geothermal	-	-	120	-
Total	1,668	758	11,595	6,503

(1): The projects got the environmental permits (Environmental Qualification Resolution).


(2): In process to get the environmental permit.

Source: SEIA July 2014

www.systep.cl



Source: CER, SEIA, Systep, July 2014

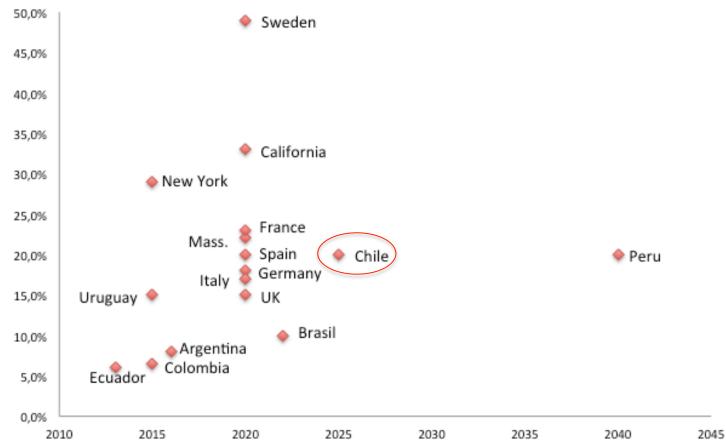
Society's perception of energy costs

Would you say that in the last time the price of the following basic services in Chile have had normal rises?

(On a scale of 1 to 5, where 1 means "a normal rise" and 5 means "an excessive rise")

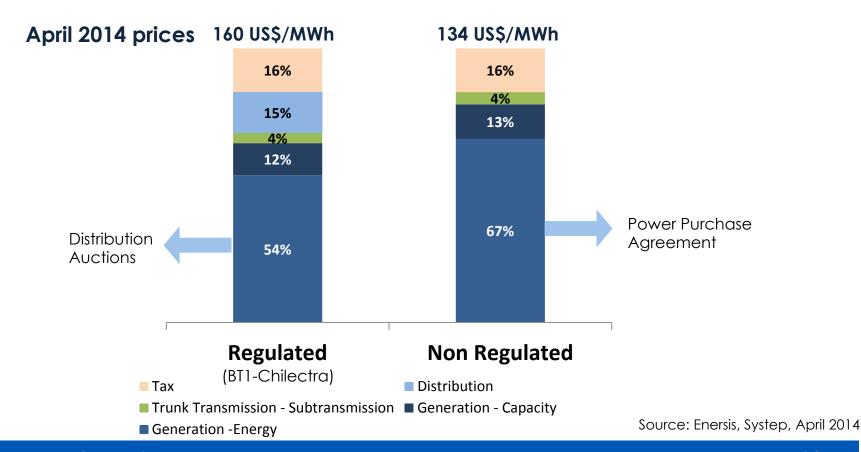
Which of the following factors is the main responsible of the current cost of electricity?

37% ■ First Mention 30% Second Mention 21% 20% 18% 15% 14% 14% 10% 2% The absence of a Monopolist NR/DK The lack of new Rejection of The impact of the state policy concentration power projects by communities to global economic promoting electrical the private secto the construction situation unconventional of new companies renewable energy generation plants


Source: FeedBack, 2014

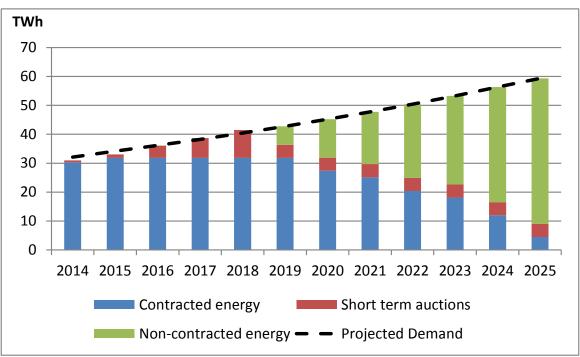
Global renewable objectives

Sources:


- (1) CIDET-Cono Sur SER-GIMEL 2014 "Interconexiones regionales para el desarrollo de una matriz de energia sustentable"
- (2) www.dsireudsa.org
- (3) CEER, "Status review of reneable and energy efficiency support schemes in Europe", June 2013

Price structure in Chile

 Objective: Estimate tariffs for non-regulated and regulated clients in 2025, assuming that capacity payments, distribution tariffs and taxes remain constant



Price structure in Chile

- Energy price for regulated clients by 2025 will be affected by two factors:
 - Current contracts expiration
 - NCRE quota (only when NCRE require an overprice)
- Assumption: all new contracts by 2025 fulfill the NCRE quota of that year (20%)
- Both tariffs could experience an additional overprice due to additional transmission and spinning reserve requirements

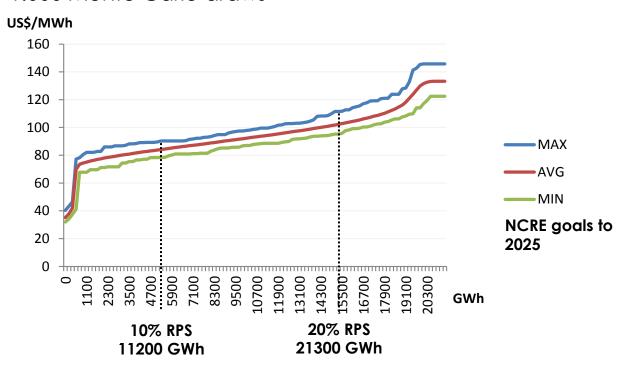
Source: Enersis, Systep, April 2014

- Simulation of system expansion up to 2025 with two quota schemes
- Consideration of private generation driven expansion
 - Scenario 1: Coal based expansion
 - Scenario 2: LNG based expansion
- Hydrothermal simulation of SIC, multi-nodal and multi-dam representation of the SIC.

Item	Coal	LNG – Combined Cycle
Unitary investment	2,400 – 2,800 US\$/kW	1,000 – 1,200 US\$/kW
Capacity factor	85% - 90%	50% - 80%
Fuel prices	100 – 130 US\$/Ton	11.0 – 13.0 US\$/MMBtu
Variable cost	37.0 – 47.5 US\$/MWh	78.2 – 91.8 US\$/MWh
Debt-equity rate	70%/30%	70%/30%
Levelized cost of energy (LCOE)	76.5 – 96.4 US\$/MWh	74.4 – 115.0 US\$/MWh

Marginal costs not affected by 10 or 20% penetration levels, defined by private investment decisions, and resulting as those from conventional coal or LNG driven expansion.

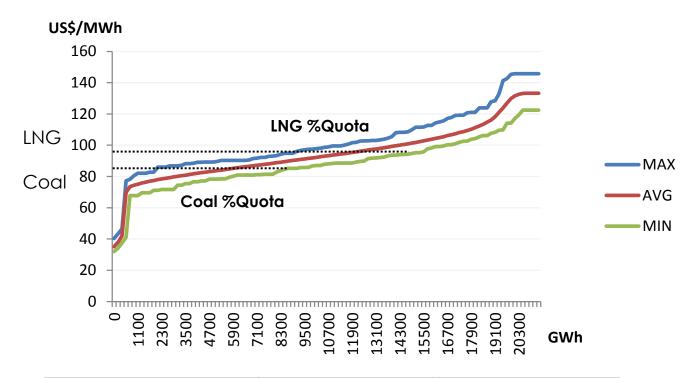
- NCRE supply curve:
 - What is the price for a given amount of NCRE?
 - Given a long term price, what is the amount of NCRE that would be installed?
- Assumptions:


Technology	Investr	nent [US	\$/kW]	Lo	oad facto	or	Lev [U	Available Capacity			
	Min.	Ave.	Max.	Min.	Ave.	Max.	Min.	Ave.	Max.	[MW]	
Biomass	1,750	2,200	2,710	75%	80%	90%	33.5	43.6	57.6	91	
Geothermal	3,480	5,750	6,600	88%	90%	92%	65.1	65.1 105.4 122.		96	
Small hydro	3,510	4,210	4,910	50%	60%	70%	69.0	93.2	127.2	261	
Wind	2,000	2,250	2,500	25%	33%	40%	66.5	88.3	123.2	2,370	
Photovoltaic solar	1,960	1,990	2,500	20%	25%	35%	73.2 102.3 15		155.4	5,248	
Concentrating solar	7,380	7,310	8,530	70%	80%	90%	120.9 132.0		167.2	320	

- Normally, effective installed capacity is less than the reported capacity in the environmental studies, therefore only 80% of the reported capacity of each project is considered
- Monte Carlo method is used to evaluate levelized costs of future projects
 - The future set of projects is defined using SEIA information
 - Investment costs and load factors of those projects are modeled as random variables using independent truncated normal distributions.

16

Results for 1.000 Monte Carlo draws


- Future investment decisions of projects installed after 2014
 - NCRE energy up to 2014: 6,150 GWh

What would the efficient renewable quota be?

 Depending of the expected price, given by the generation expansion scenarios, the NCRE quota constraint could be active or no

Item	Co	al scenc	ırio	LNG scenario				
110111	Min.	Ave.	Max.	Min.	Ave.	Max.		
Efficient NCRE Quota in 2025	8%	11%	14%	15%	18%	20%		

Additional Transmission costs

Methodology

- Base transmission expansion plan considers all existing transmission lines and future lines considered in regulated expansion (source: CNE, CDEC-SIC, CDEC-SING)
- Power flows are calculated for each scenario (10 and 20% RPS, coal and NLG)
- Expansions are added to satisfy power flows

Results

- 10% RPS: No additional lines required
- 20% RPS: Additional lines required in 2022 due to high wind and solar penetration
- Total annualized cost: 79.6 MMUS\$

P. Azúcar **Existing** 500kV lines Polpaico New line: 2 x 1500 MVA 1200 km A. Jahuel 750 MMUS\$ Ancoa Charrúa

Incremental operational costs

- SIC requires a spinning reserve between 5% and 8% of the peak demand (source: CDEC-SIC)
- Hydro dam power plants must increase their spinning reserve, reducing their energy generation and triggering more LNG use.
- Methodology
 - Intermittent renewable power is identified for both 10% and 20% RPS scenarios in
 2025
 - LNG generation equals intermittent renewable power (MW) multiplied by spinning reserve (%)
 - Annual generation is calculated using LNG fuel cost
- Assumptions
 - Intermittent NCRE coincidence factor: 100%
 - LNG power plants replace hydro power for 8 hours a day, 365 days a year
 - LNG variable cost: 78 US\$/MWh

Item		RPS 10%		RPS 20%					
Item	Min.	Ave.	Max.	Min.	Ave.	Max.			
Spinning Reserve	5%	6.5%	8%	5%	6.5%	8%			
Intermittent generation [MW]		2,793		6,057					
Additional spinning reserve [GWh]	408	530	652	884	1,150	1,415			
Annual costs [MMUS\$]	32	41	69	89 110					

Regulated consumer final tariff

Regulated consumer tariff 2025			Coal Scenario RPS 10% RPS 20%						LNG Scenario RPS 10% RPS 20%					
		Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	
Final tariff	US\$/MWh	175.9	176.0	176.5	177.6	178.9	180.6	188.7	188.7	188.7	188.4	189.4	191.1	
Additional Transmission	US\$/MWh	0	0	0	0	0.46	0.69	0	0	0	0	0.46	0.69	
Incremental Operational cost	US\$/MWh	0.28	0.36	0.44	0.60	0.78	0.96	0.27	0.36	0.44	0.60	0.78	0.95	
Total tariff	US\$/MWh	176.2	176.4	176.9	178.2	180.1	182.2	189.0	189.1	189.2	189.0	190.6	192.7	
Difference (RPS 20%-RPS 10%)	US\$/MWh	2.0	3.8	5.3				0.0	1.6	3.6				
% Change (RPS 20%/RPS 10%)		1.1%	2.1%	3.0%				0.0%	0.8%	1.9%				

- Total expected increase is within 3%
- Coal scenario has a larger increase due to the cost competitiveness of coal fired power plants

Large consumer energy price

Large consumer energy price 2025		Coal Scenario							LNG Scenario						
(Tx and other costs exc	luded)		RPS 109	%		RPS 20	%		RPS 10	%		RPS 209	%		
		Min	Avg	Max	Min	Avg	Max	Min	Avg	Max	Min	Avg	Max		
Energy Price	US\$/MWh	85.6	85.7	86.7	87.5	88.8	90.7	98.7	98.7	98.7	98.4	99.5	101.4		
Additional Transmission	US\$/MWh	0	0	0	0	0.46	0.69	0	0	0	0	0.46	0.69		
Incremental Operational cost	US\$/MWh	0.28	0.36	0.44	0.60	0.78	0.96	0.27	0.36	0.44	0.60	0.78	0.95		
Total	US\$/MWh	85.9	86.1	87.2	88.1	90.1	92.3	99.0	99.1	99.2	99.0	100.7	103.0		
Difference (RPS 20%-RPS 10%)	US\$/MWh	2.2	4.0	5.2				0.0	1.6	3.8					
% Change (RPS 20%/RPS 10%)		2.6%	4.7%	5.9%				0.0%	1.7%	3.9%					

- Total expected increase is within 5,9 %
- Coal scenario has a larger increase due to the cost competitiveness of coal fired power plants

- 1. Current renewable portfolio standard has a limited impact in final energy tariff:
 - Regulated residential consumer: max. increase 3.0 %
 - Large consumer: max. increase 5.9 %
- 2. Limited impact due to:
 - Renewables are competitive given high generation cost in Chile
 - Abundant solar and wind efficient resources
- Energy prices expected to rise due to renewal of existing contracts and more costly conventional thermal technologies
 - Regulated residential consumer: max. increase 18.9%
 - Large consumer: max. increase 9.4%

- 4. For a 20% renewable quota to have a limited impact, the following challenges need to be addressed:
 - Transmission access
 - Renewable participation in regulated supply tenders
- 5. Further ongoing work to further asses impact in operational and transmission costs through better long term modelling of system operation
- Further increase of renewable quota needs to be assesed carefully and these results can not be extrapolated.
 - Discussion of 30 % target

More information of the Chilean electricity market:

- Publications<u>www.systep.cl/?page_id=23</u>
- Monthly reports
 <u>www.systep.cl/?page_id=21</u>

The impact of renewable portfolio standard in fast growing countries The Chilean experience

Sebastian Mocarquer, IEEE Member (smocarquer@systep.cl)
Hugh Rudnick, IEEE Fellow (hrudnick@systep.cl)

Washington, July 27-31, 2014