

Power System Flexibility: Key elements in the Chilean Power System

Hugh Rudnick, IEEE Fellow (<u>hrudnick@ing.puc.cl</u>) Miguel Diaz (<u>mdiaz@systep.cl</u>)

Alejandro Navarro-Espinosa (<u>anavarro@systep.cl</u>)

Portland, August 2018

Motivation

> Projections

 High penetration of variable renewable energy (VRE)

Technology	Installed [MW]
Solar	2,090
Wind	1,299
Hydro Dam	3,858
Hydro Run of the	
River	2,803
Thermal	12,110
Geothermal	465

Total SEN: 22.654 MW

Total VRE SEN ~ 15% (Variable Renewable Energy, i.e., Solar and Wind)

How fit is our system for a high penetration of VRE?

Motivation

Caso

Real 2017

Normalized Flexibility Index (NFI)

Calculation based on the installed capacity without considering the operation point

Min capacity, Startup/Down time, Ramp rate

FLEXSystem

0.679

$$flex(i) = \frac{\frac{1}{2}[P_{max}(i) - P_{min}(i)] + \frac{1}{2}[Ramp(i)]}{P_{max}(i)}$$

$$FLEX_{system} = \sum_{i \in A} \left[\frac{P_{max}(i)}{\sum_{i \in A} P_{max}(i)} \cdot flex(i) \right]$$

Flexibility Level	FLEX _{System}
High	0.63
Medium	0.48
Low	0.43

Consideration

\triangleright	Base on the index, the Chilean fleet can be
	considered flexible

Question: is the Chilean system flexible without hydro – dams?

Motivation

Why do we need to have some level of flexibility?

- Demand
 - Max 14,496 [MW]
 - Average 11,029 [MW]
 - ➢ Mín 8,225 [MW]

- Net Load
 - ➢ Max 8,720 [MW]
 - Average 7,929 [MW]
 - Min 5,723 [MW]

Who is following the demand?

Correlation between Net Load and generation for different technologies Hydro Dam
Natural Gas

Net Load Tracking

- Correlation between Net Load and generation ramp for different technologies
 - Today, who is responsible for the system flexibility?

Hydro Dam

Natural Gas

What is going on today? **Real 2017** Guacolda 1 Generation[MWh] Min Capacity [MWh] 180 160 140 120 100 80 60 40 20 0 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 5 9 13 17 21 5 9 13 17 21 5 9 13 17 21 9 13 17 21 25 27 28 26 24 29 30 31 What is going to happen in the future with a high penetration of ERV?

Power & Energy Society*

Case Study: Understanding Power System Flexibility

Base Case

Contribution from

- ➤Transmission
- ≻Hydro Power Dams
- ➢ Batteries

Base Case

Installed capacity in Base case in 2027

Demand

- Max 14,496 [MW]
- Average 11,029 [MW]
- ➢ Min 8,225 [MW]

> Topology

- 588 Bus Bar
- 724 Transmission lines

Units

- > 245 Thermal
- ▶ 149 VRE
- > 11 Hydro Dam
- > 70 Hydro Run of the River

Technology	Installed [MW]
Solar	2,090
Wind	1,299
Hydro Dam	3,858
Hydro Run of the River	2,803
Thermal	12,110
Geothermal	465

VRE SEN: 11,274 MW Total SEN: 30,875 MW

Total VRE SEN ~ 36% (Variable Renewable Energy, i.e., Solar and Wind)

Assumptions

Real topology of Chilean national electricity system (SEN)

- Generators available today
- Realistic new entrances for conventional generators

Demand

Compound growth rate ~ 3.3%

Deterministic simulations

- 3 hydrological scenarios (Dry, Medium, Wet)
- One fuel price scenario
- One representative week for each month

Resolution of the problem

Hourly resolution

Simulations in two stages

- Long term with OSE2000
- Short term model HELO (MILP)

Hourly electric operation model - HELO

Methodology developed by Systep

Power & Energy Society*

Description of operation model - HELO Simulated model dimension Chilean national grid Units Topology 245 Thermal power plants 588 Bus Bar 149 VRE plants 11 Hydro power Dams 724 Transmission lines 70 Hydro Run of River **Complete model: Constraints** 79,000 + 280,000 **Lineal variables** + 19,000 **Integer Variables** 380.0 ncoa 2

Base Case Results

Base Case: Net Load Tracking

Correlation between Net Load and generation for different technologies

Net Load Tracking

Correlation between Net Load and generation ramp for different technologies

Base Case: Cycling Analysis

Average annual cycling (3 hydrologies)		
Technology	Base 2027	Real 2017
Coal	4220	391
Diesel	216	25
Natural Gas	1032	13
Total	5468	429

Base Case: Start-up and Shutdown Analysis

Start Up Shutdown

Average annual cycling (3 hydrologies)			
Technology Base 2027		Real 2017	
Coal	4220	391	
Diesel	216	25	
Natural Gas	1032	13	
Total	5468	429	

Base Case: Curtailment Analysis

Base Case: Curtailment Analysis

Total Anual Curtailment [GWh]		
Hydrology Base 2027		
38	92	
50	96	
54	124	

Case Study: Understanding Power System Flexibility

Base Case

Contribution from

➤ Transmission

- ≻Hydro Power Dams
- ➢ Batteries

Case Study: Transmission contribution

Curtailment considering the transmission system in the optimization/simulation process

These curtailments are potentially caused by transmission problems and/or lack of flexibility of the power system

Case Study: Transmission contribution

TEST 1: Curtailment **without** transmission restrictions

Problems eliminated had their origin in the transmission system. Are the remaining issues due to the flexibility of the installed fleet?

Case Study: Transmission contribution

Case of analysis: LP resolution and without transmission

TEST 2: Curtailment **without** transmission and Resolution LP (without binary constraints)

Remaining issues have their origin in the lack of flexibility of the system

Therefore, the possibility to move flexibility through the system is also important

Power & Energy Socie

- IRRE: Insufficient ramping resource expectation: metric based on the probability that the system does not have enough ramp
- Considering the fact that the capacity of ramp up and down depends on the point of power system operation
- Calculation depends on the technical characteristics of the units:
 - Start up / Down time
 - Minimum and maximum Capacity
 - Ramp up/ Down

Power & Energy Socie

```
Up Flexibility — Dn Flexibility — Min Capacity [MW]
Generation [MW] — Max Capacity [MW]
```


IRRE = Insufficient Ramping Resource Expectation

IRRE Up		
Hydrology	Base 2027	Real 2017
38	0	
50	0	0
54	0.001	

IRRE Dn		
Hydrology	Base 2027	Real 2017
38	1.39	
50	4.09	0.16
54	6.69	

$$Flex_{t,i} = Ramp_{up} \cdot (1 - (1 - Online_{t,i}) \cdot S_i)$$

 $Flex_t^{System} = \sum_{\forall i} Flex_{t,i}$

$$IRRP_{t} = AFD_{t}(Ramp_{carga} - 1)$$
$$IRRE = \sum_{\forall t \in T} IRRP_{t}$$

Parameter descriptions		
Ramp _{up} Ramp up of generator i		
$Online_{t,u}$	Operation state of generator i in hour t	
S _i	Star up time of generador i	
AFD _t Distribution adjust evaluated in hour t		

IRRE = Probability that the system does not have enough ramp

Largest flexibility problems are due to the solar ramp-up

> **IRRE** = based on the probability that the system does not have enough ramp

Largest flexibility problems are due to the solar ramp-up

Case Study: Understanding Power System Flexibility

Base Case

Contribution from

➤Transmission

Hydro Power Dams

➢ Batteries

Hydro Power Dams contribution to the system

Normalized Flexibility Index (NFI)

Calculation based on the installed fleet without considering the operation point

Min capacity, Startup/Down time, Ramp rate

$$flex(i) = \frac{\frac{1}{2}[P_{max}(i) - P_{min}(i)] + \frac{1}{2}[Ramp(i)]}{P_{max}(i)}$$

$$FLEX_{system} = \sum_{i \in A} \left[\frac{P_{max}(i)}{\sum_{i \in A} P_{max}(i)} \cdot flex(i) \right]$$

Flexibility Level	FLEX _{System}
High	0.63
Medium	0.48
Low	0.43

Consideration

Caso	FLEX _{System}
Real	0.679
Without Hydro Dams	0.621

- Base on the index, the Chilean fleet is considered flexible
- Without Hydro Power Dams: Chilean fleet is still flexible, but the operation (and costs) change considerable.

Hydro Power Dams contribution to the system

➢ IRRE – Without Hydro Dams

Power & Energy Soci

IRRE Up					IRRE Down			
Hydi	rology	Base 2027	Without Hydro Dam		Hydrology	Base	Without Hydro Dam	
	38	0	0.1489		38	1.39	25.84	
	50	0	0.213		50	4.09	20.31	
	54	0.001	0.28		54	6.69	11.43	
0.05 0.045 0.04 0.035 0.03 0.025 0.012 0.015 0.01 0.005 0	1 4 7 10 13	- With	16 19 22 1 4 7 10 13 16 19	B	ase 2027 2 1 4 7 10 13 16 19 22	IRRI	Down	
	25	26	25		26	25	26	
	3				7		11	
			Month	/ [Day / Day Hour		*	

Hydro Power Dams contribution to the system

➢IRRE – Without Hydro Dams

IRRE Up			IRRE Down			
Hydrology	Base 2027	Without Hydro Dam	Hydrology	Base	Without Hydro Dam	
38	0	0.1489	38	1.39	25.84	
50	0	0.213	50	4.09	20.31	
54	0.001	0.28	54	6.69	11.43	
0.012	— With	out Hydro Dam 🛛 —	Base 2027	IRRI	PUP	
0.01 0.008 0.006 0.004 0.002 0			<u> </u>	hn	<u></u>	
1 4 7 10	0 13 16 19 22 1 4 7 1	0 13 16 19 22 1 4 7 10 13	16 19 22 1 4 7 10 13 1	6 19 22 1 4 7 10 13 1	16 19 22 1 4 7 10 13 16 3	
	25	26 25	26	25	26	
	3		7		11	
		M	onth / Day / Day Hour			

Net Load Tracking

Correlation between Net Load and generation ramp for different technologies

Operational cost analysis 2027

Annual Total Cost [USD]				
Case	Total Average Cost			
Base	\$ 1,590,433,567			
Without Hydro Dams	\$ 2,411,513,066			

Curtailment analysis 2027

Total Annual Curtailment [GWh] Base 2027			
Case	Average		
Base	105		
Without Hydro Dams	176		

Cycling analysis 2027

Coal Diesel Natural Gas

Average of Annual cycling (Over hydrologies)						
Technology	Without Hydro dams					
Coal	4,220	3,376				
Diesel	216	301				
Natural Gas	1,032	1,516				
Total	5,468	5,193				

Base Case: Start-up and Shutdown Analysis

Base 2027

Real 2017

Total Annual Start-Up				Total Annual shutdown			
Technology	Base	Without Hydro Dams	Real	Technology	Base	Without Hydro Dams	Real
Coal	671	423	273	Coal	688	403	270
Diesel	3,093	12,356	776	Diesel	3,059	12,353	772
Natural Gas	715	1,903	327	Natural Gas	701	1,904	328
Total	4,241	14,681	1,376	Total	4,448	14,660	1,370

Case Study: Understanding Power System Flexibility

Base Case

- Contribution from
 - ➤Transmission
 - ≻Hydro Power Dams
 - **Batteries**

Implementation in Base Case 2027

Simulated case

- Capacity and size equivalent to Tesla batteries in Australia for each location
 - Realistic operation with batteries
 - Capacity of 100 [MW] / 129 [MWh] each
 - Location in representative nodes of the system

Batteries in 11 locations:

- Crucero 220
- Atacama 220
- Diego de Almagro 220
- Cardones 220
- Pan de Azúcar 500
- Polpaico 220

- Alto Jahuel 220
- Ancoa 220
- Charrúa 220
- Valdivia 220
- Puerto Montt 220

Battery Capacity [MWh] **Duration** [Hrs] Battery Alto Jahuel 220 100 1.26 100 1.26 Battery Ancoa 220 Battery Atacama 220 1.26 100 **Battery Cardones 220** 1.26 100 Battery Charrúa 220 100 1.26 Battery Crucero 220 100 1.26 Battery Diego de Almagro 220 100 1.26 Battery Pan de Azúcar 500 1.26 100 Battery Polpaico 220 100 1.26 Battery Puerto Montt 220 100 1.26 Battery Valdivia 220 100 1.26

The New York Times

Australia Powers Up the World's Biggest Battery — Courtesy of Elon Musk

Battery	Capacity [MWh]	Duration [Hrs]
Battery Alto Jahuel 220	100	1.26
Battery Ancoa 220	100	1.26
Battery Atacama 220	100	1.26
Battery Cardones 220	100	1.26
Battery Charrúa 220	100	1.26
Battery Crucero 220	100	1.26
Battery Diego de Almagro 220	100	1.26
Battery Pan de Azúcar 500	100	1.26
Battery Polpaico 220	100	1.26
Battery Puerto Montt 220	100	1.26
Battery Valdivia 220	100	1.26

Batteries are not charging at the moment of cheapest marginal cost, but when the system needs them the most (in the solar ramping up)

Cost Analysis

■ Generation cost ■ Fail Cost ■ Binary Cost

Power & Energy Society*

IEEE

Batteries contribution to the system flexibility > Curtailment

Base 2027

Total Annual Curtailment [GWh]				
Тіро	Total			
Base	105			
Without Hydro Dam	176			
Battery	32			

Cycling Analysis

Average of Annual cycling (3 Hydrologies)						
Technology	Base	Without Hydro Dams	Battery			
Coal	4,220	3,376	3,500			
Diesel	216	301	220			
Natural Gas	1,032	1,516	916			
Total	5,193	4,632				

Start-Up and shutdown Analysis

Total Annual Start-Up						
Technology	Base	Without Hydro Dams	Battery			
Coal	671	423	592			
Diesel	3,093	12,356	2,684			
Natural Gas	715	1,903	484			
Total	4,241	14,681	3,760			

Final Remarks

- The current and projected installed fleet is flexible, according to the metrics analyzed for the VRE adoption levels studied (36% 2027).
- The storage capacity (hydro power dams) in the Chilean system is an important factor in its flexibility (i.e., possibility to follow the ramping requirements)
- The transport capacity is crucial to "move" flexibility throughout the system.
- The short-term batteries do not charge and discharge at times of maximum price difference. On the contrary, it is convenient, from a system perspective, if they charge during the solar ramping-up.

Bibliography

- [1] J. Ma, V. Silva, R. Belhomme, D. S. Kirschen, and L. F. Ochoa, "Exploring the use of flexibility indices in low carbon power systems," *IEEE PES Innov. Smart Grid Technol. Conf. Eur.*, no. 2, pp. 1–5, 2012.
- [2] E. Lannoye, D. Flynn, and M. O'Malley, "Evaluation of power system flexibility," *IEEE Trans. Power Syst.*, vol. 27, no. 2, pp. 922–931, 2012.
- [3] A. A. Thatte and L. Xie, "A metric and market construct of inter-temporal flexibility in time-coupled economic dispatch," *IEEE Trans. Power Syst.*, vol. 31, no. 5, pp. 3437–3446, 2016.
- [4] F. Ávila, J. Ayala, P. Cerda, A. Navarro-Espinosa, S. Córdova, and H. Rudnick, "Importance of hourly multi-bus unit commitment models in the context of high adoption of variable renewable energies: A Chilean example," 2017 IEEE PES Innov. Smart Grid Technol. Conf. - Lat. Am. ISGT Lat. Am. 2017, vol. 2017–Jan, pp. 1–6, 2017.

Power System Flexibility: Key elements in the Chilean Power System

Hugh Rudnick, IEEE Fellow (<u>hrudnick@ing.puc.cl</u>) Miguel Diaz (<u>mdiaz@systep.cl</u>)

Alejandro Navarro-Espinosa (<u>anavarro@systep.cl</u>)

Portland, August 2018

